Time-space Kriging to address the spatiotemporal misalignment in the large datasets.

نویسندگان

  • Dong Liang
  • Naresh Kumar
چکیده

This paper presents a Bayesian hierarchical spatiotemporal method of interpolation, termed as Markov Cube Kriging (MCK). The classical Kriging methods become computationally prohibitive, especially for large datasets due to the O(n3) matrix decomposition. MCK offers novel and computationally efficient solutions to address spatiotemporal misalignment, mismatch in the spatiotemporal scales and missing values across space and time in large spatiotemporal datasets. MCK is flexible in that it allows for non-separable spatiotemporal structure and nonstationary covariance at the hierarchical spatiotemporal scales. Employing MCK we developed estimates of daily concentration of fine particulates matter ≤2.5 μm in aerodynamic diameter (PM2.5) at 2.5 km spatial grid for the Cleveland Metropolitan Statistical Area, 2000 to 2009. Our validation and cross-validation suggest that MCK achieved robust prediction of spatiotemporal random effects and underlying hierarchical and nonstationary spatiotemporal structure in air pollution data. MCK has important implications for environmental epidemiology and environmental sciences for exposure quantification and collocation of data from different sources, available at different spatiotemporal scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Kriging with External Drift

In statistics it is often assumed that sample observations are independent. But sometimes in practice, observations are somehow dependent on each other. Spatiotemporal data are dependent data which their correlation is due to their spatiotemporal locations.Spatiotemporal models arise whenever data are collected across bothtime and space. Therefore such models have to be analyzed in termsof thei...

متن کامل

Groundwater Level Forecasting Using Wavelet and Kriging

In this research, a hybrid wavelet-artificial neural network (WANN) and a geostatistical method were proposed for spatiotemporal prediction of the groundwater level (GWL) for one month ahead. For this purpose, monthly observed time series of GWL were collected from September 2005 to April 2014 in 10 piezometers around Mashhad City in the Northeast of Iran. In temporal forecasting, an artificial...

متن کامل

Spatiotemporal Variations of Total Cloud Cover and Cloud Optical Thickness in Iran

A knowledge of cloud properties and spatiotemporal variations of clouds is especially crucial to understand the radiative forcing of climate. This research aims to study cloudiness in Iran using the most recent satellite data, powerful databases, and regional and seasonal analyses. In this study, three data series were used for the spatiotemporal variations of cloudiness in the country: A) Clou...

متن کامل

Investigation of chemical characteristics and spatiotemporal quantitative changes of dust fall using GIS and RS technologies; a case study, Yazd city, central plateau of Iran

 Background: The phenomenon of dust is a serious environmental problem in dry and semi dry regions. It has a destructive effect for the residents of such regions. Over two-thirds of Iran is in areas of dry and semi-dry climate conditions. Methods: In this research, dust fall measurements were taken in 41 stations across Yazd city using a marble dust collector (MDCO) located in diffe...

متن کامل

تحلیل زمان- مکان موارد سل ریوی در استان همدان با استفاده از خطر قابل انتساب جمعیت

Background and Objectives: One of the applications of population attributable risk percent (PAR%) is to estimate the disease burden in a population exposed to several risk factors. Therefore, this study was conducted to estimates the PAR% of the space-time clusters of pulmonary tuberculosis. Methods: In this study, the data of pulmonary TB cases were obtained from the health department of Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Atmospheric environment

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2013